World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Regular ArticleFree Access

APPLICATION OF VARIATIONAL PRINCIPLE AND FRACTAL COMPLEX TRANSFORMATION TO (3+1)-DIMENSIONAL FRACTAL POTENTIAL-YTSF EQUATION

    https://doi.org/10.1142/S0218348X24500270Cited by:13 (Source: Crossref)

    This paper focuses on the numerical investigation of the fractal modification of the (3+1)-dimensional potential-Yu–Toda–Sasa–Fukuyama (YTSF) equation. A variational approach based on the two-scale fractal complex transformation and the variational principle is presented for solving this fractal equation. The fractal potential-YTSF equation can be transformed as the original potential-YTSF equation by means of the fractal complex transformation. Some fractal soliton-type solutions and fractal periodic wave solutions are provided by using the variational principle proposed by He, which are not touched in the existing literature. Some remarks about the variational formulation and the wave solutions for the original potential-YTSF equation by Manafian et al. [East Asian J. Appl. Math. 10(3) (2020) 549–565] are also given. Numerical results of the fractal wave solutions with different fractal dimensions and amplitudes are presented to show the propagation behavior.

    Remember to check out the Most Cited Articles!

    Check out New & Notable Titles in Nonlinear Science
    Includes authors Leon O Chua, Bruce J West and more

    "