World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Regular ArticleFree Access

ON THE ASYMPTOTIC STABILITY OF A NEW FRACTIONAL-ORDER SLIDING MODE CONTROL WITH APPLICATION TO ROBOTIC SYSTEMS

    https://doi.org/10.1142/S0218348X24500312Cited by:2 (Source: Crossref)

    This paper presents an advanced control strategy based on Fractional-Order Sliding Mode Control (FO-SMC), which introduces a robust solution to significantly improve the reliability of robotic manipulator systems and increase its control performance. The proposed FO-SMC strategy includes a two-key term-based Fractional Sliding Function (FSF) that presents the main contribution of this work. Additionally, a fractional-order-based Lyapunov stability analysis is developed for a class of nonlinear systems to guarantee the asymptotic stability of the closed loop system. Four FSF-based versions of the designed FO-SMC are studied and discussed. Various scenarios of the proposed control strategy are tested on a 3-degree-of-freedom SCARA robotic arm and compared to recent FO-SMC works, demonstrating the effectiveness of the new proposed control strategy to (i) ensure the asymptotic stability, (ii) achieve a smooth start-up, (iii) cancel the static error, giving a good tracking trajectory, and (iv) reduce the control torques, yielding a consumed energy minimization.