World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HARNESSING PRIVACY-PRESERVING FEDERATED LEARNING WITH BLOCKCHAIN FOR SECURE IOMT APPLICATIONS IN SMART HEALTHCARE SYSTEMS

    https://doi.org/10.1142/S0218348X25400201Cited by:0 (Source: Crossref)
    This article is part of the issue:

    The Internet of Medical Things (IoMT) refers to interconnected medical systems and devices that gather and transfer healthcare information for several medical applications. Smart healthcare leverages IoMT technology to improve patient diagnosis, monitoring, and treatment, providing efficient and personalized healthcare services. Privacy-preserving Federated Learning (PPFL) is a privacy-enhancing method that allows collaborative method training through distributed data sources while ensuring privacy protection and keeping the data decentralized. In the field of smart healthcare, PPFL enables healthcare professionals to train machine learning algorithms jointly on their corresponding datasets without sharing sensitive data, thereby maintaining confidentiality. Within this framework, anomaly detection includes detecting unusual events or patterns in healthcare data like unexpected changes or irregular vital signs in patient behaviors that can represent security breaches or potential health issues in the IoMT system. Smart healthcare systems could enhance patient care while protecting data confidentiality and individual privacy by incorporating PPFL with anomaly detection techniques. Therefore, this study develops a Privacy-preserving Federated Learning with Blockchain-based Smart Healthcare System (PPFL-BCSHS) technique in the IoMT environment. The purpose of the PPFL-BCSHS technique is to secure the IoMT devices via the detection of abnormal activities and FL concepts. Besides, BC technology can be applied for the secure transmission of medical data among the IoMT devices. The PPFL-BCSHS technique employs the FL for training the model for the identification of abnormal patterns. For anomaly detection, the PPFL-BCSHS technique follows three major processes, namely Mountain Gazelle Optimization (MGO)-based feature selection, Bidirectional Gated Recurrent Unit (BiGRU), and Sandcat Swarm Optimization (SCSO)-based hyperparameter tuning. A series of simulations were implemented to examine the performance of the PPFL-BCSHS method. The empirical analysis highlighted that the PPFL-BCSHS method obtains improved security over other approaches under various measures.