World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INTEGRATING FRACTAL SNOW ABLATION OPTIMIZER WITH BAYESIAN MACHINE LEARNING FOR ASPECT-LEVEL SENTIMENT ANALYSIS ON SOCIAL MEDIA

    https://doi.org/10.1142/S0218348X25400250Cited by:0 (Source: Crossref)
    This article is part of the issue:

    Social media platforms have become vast repositories of user-generated content, offering an abundant data source for sentiment analysis (SA). SA is a natural language processing (NLP) algorithm that defines the sentiment or emotional tone expressed in the given text. It includes utilizing computational techniques to automatically detect and categorize the sentiment as negative, positive, or neutral. Aspect-based SA (ABSA) systems leverage machine learning (ML) approaches to discriminate nuanced opinions within the text, which break down sentiment through particular attributes or aspects of the subject matter. Businesses and researchers can gain deep insights into brand perception, public opinion, and product feedback by integrating social media data with ABSA methodologies. This enables the extraction of sentiment polarity and more actionable and targeted insights. By applying ML approaches trained on the abundance of social media data, organizations can identify areas for improvement, tailor their strategies to meet their audience’s evolving needs and preferences and better understand customer sentiments. In this view, this study develops a new Fractal Snow Ablation Optimizer with Bayesian Machine Learning for Aspect-Level Sentiment Analysis (SAOBML-ALSA) technique on social media. The SAOBML-ALSA approach examines social media content to identify sentiments into distinct classes. In the primary stage, the SAOBML-ALSA technique preprocesses the input social media content to transform it into a meaningful format. This is followed by a LeBERT-based word embedding process. The SAOBML-ALSA technique applies a Naïve Bayes (NB) classifier for ALSA. Eventually, the parameter selection of the NB classifier will be done using the SAO technique. The performance evaluation of the SAOBML-ALSA methodology was examined under the benchmark database. The experimental results stated that the SAOBML-ALSA technique exhibits promising performance compared to other models.