World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HARNESSING DEEP TRANSFER LEARNING WITH IMAGING TECHNOLOGY FOR UNDERWATER OBJECT DETECTION AND TRACKING IN CONSUMER ELECTRONICS

    https://doi.org/10.1142/S0218348X25400328Cited by:0 (Source: Crossref)
    This article is part of the issue:

    Consumer electronics like action underwater drones and cameras commonly include object detection abilities to automatically capture underwater images and videos by tracking and focusing objects of interest. Underwater object detection (UOD) in consumer electronics revolutionizes interactions with aquatic environments. Modern consumer gadgets are increasingly equipped with sophisticated object detection capabilities, from action cameras to underwater drones, which allow users to automatically capture clear videos and images underwater by tracking and identifying objects of interest. This technology contributes to user safety by enabling devices to avoid collisions with underwater obstacles and improving underwater videography and photography quality in complex systems simulation platforms. Classical approaches need a clear feature definition that suffers from uncertainty due to differing viewpoints, occlusion, illumination, and season. This paper focuses on developing Deep Transfer Learning with Imaging Technology for Underwater Object Detection and Tracking (DTLIT-UOBT) techniques in consumer electronics. The DTLIT-UOBT technique uses deep learning and imaging technologies to detect and track underwater objects. In the DTLIT-UOBT technique, the bilateral filtering (BF) approach is primarily used to improve the quality of the underwater images. Besides, an improved neural architectural search network (NASNet) model derives feature vectors from the preprocessed images. The DTLIT-UOBT technique uses the jellyfish search fractal optimization algorithm (JSOA) for the hyperparameter tuning process. Finally, the detection and tracking of the objects can be performed by an extreme learning machine (ELM). A sequence of simulations was used to authorize the performance of the DTLIT-UOBT model by utilizing an underwater object detection dataset. The experimental validation of the DTLIT-UOBT model exhibits a superior accuracy value of 95.71% over other techniques.