World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN ADAPTIVE NUMERICAL STRATEGY FOR THE MEDIUM-FREQUENCY ANALYSIS OF HELMHOLTZ'S PROBLEM

    https://doi.org/10.1142/S0218396X11004481Cited by:14 (Source: Crossref)

    The variational theory of complex rays (VTCR) is a wave-based predictive numerical tool for medium-frequency problems. In order to describe the dynamic field variables within the substructures, this approach uses wave shape functions which are exact solutions of the governing differential equation. The discretized parameters are the number of substructures (h) and the number of wavebands (p) which describe the amplitude portraits. Its capability to produce an accurate solution with only a few degrees of freedom and the absence of pollution error make the VTCR a suitable numerical strategy for the analysis of vibration problems in the medium-frequency range. This approach has been developed for structural and acoustic vibration problems. In this paper, an error indicator which characterizes the accuracy of the solution is introduced and is used to define an adaptive version of the VTCR. Numerical illustrations are given.