Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Pulse Scattering on an Ice Sphere Submerged in a Homogeneous Waveguide Covered with Ice

    https://doi.org/10.1142/S0218396X16500144Cited by:2 (Source: Crossref)

    The paper is devoted to modeling of the backscattered field from a spherical target immersed in a homogeneous waveguide covered with ice. A bottom of the waveguide and an ice cover are fluid, attenuating half-spaces. A target is assumed to be acoustically rigid or fluid. In particular, the properties of the ice cover and a scatterer may coincide. The emitted signal is a pulse with a Gaussian envelope. The normal mode evaluation is applied to the scattering coefficients of a sphere. The amount of normal modes forming the backscattered field is determined by a given directivity of the source. Computational results are obtained in a wide frequency range 8–12kHz for water depths equal to several hundreds of meters, and distances between a source/receiver and a target from 1km up to 10km. It is shown that in a range interval up to several kilometers the backscattered field can be calculated also using a simplified medium model consisting of a water half-space and an ice half-space. In this case the scattering coefficients of a sphere are evaluated by the steepest descent method. For the considered oceanic waveguide of 200m depth with a sandy bottom the use of the simplified medium model essentially shortens a computing time.