World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TWO VERSIONS OF QUASI-NEWTON METHOD FOR MULTIDIMENSIONAL INVERSE SCATTERING PROBLEM

    https://doi.org/10.1142/S0218396X93000123Cited by:17 (Source: Crossref)

    Suppose that a medium with slowly changing spatial properties is enclosed in a bounded 3-dimensional domain and is subjected to a scattering by plane waves of a fixed frequency. Let measurements of the wave scattering field induced by this medium be available in the region outside of this domain. We study how to extract the properties of the medium from the information contained in the measurements. We are concerned with the weak scattering case of the above inverse scattering problem (ISP), that is, the unknown. spatial variations of the medium are assumed to be close to a constant. Examples can be found in the studies of the wave propagation in oceans, in the atmosphere, and in some biological media.

    Since the problems are nonlinear, the methods for their linearization (the Born approximation) have been developed. However, such an approach often does not produce good results. In our method, the Born approximation is just the first iteration and further iterations improve the identification by an order of magnitude. The iterative sequence is defined in the framework of a Quasi-Newton method. Using the measurements of the scattering field from a carefully chosen set of directions we are able to recover (finitely many) Fourier coefficients of the sought parameters of the model. Numerical experiments for the scattering from coaxial circular cylinders as well as for simulated data are presented.

    This research was supported by ONR grant N0014-92-J-1008.