World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IMPRECISE PREVISIONS FOR RISK MEASUREMENT

    https://doi.org/10.1142/S0218488503002156Cited by:15 (Source: Crossref)

    In this paper the theory of coherent imprecise previsions is applied to risk measurement. We introduce the notion of coherent risk measure defined on an arbitrary set of risks, showing that it can be considered a special case of coherent upper prevision. We also prove that our definition generalizes the notion of coherence for risk measures defined on a linear space of random numbers, given in literature. Consistency properties of Value-at-Risk (VaR), currently one of the most used risk measures, are investigated too, showing that it does not necessarily satisfy a weaker notion of consistency called 'avoiding sure loss'. We introduce sufficient conditions for VaR to avoid sure loss and to be coherent. Finally we discuss ways of modifying incoherent risk measures into coherent ones.