World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FUZZY CLUSTERING OF FEATURE VECTORS WITH SOME ORDINAL VALUED ATTRIBUTES USING GRADIENT DESCENT FOR LEARNING

    https://doi.org/10.1142/S0218488508005133Cited by:0 (Source: Crossref)

    There are well established methods for fuzzy clustering especially for the cases where the feature values are numerical of ratio or interval scale. Not so well established are methods to be applied when the feature values are ordinal or nominal. In that case there is no one best method it seems. This paper discusses a method where unknown numeric variables are assigned to the ordinal values. Part of minimizing an objective function for the clustering is to find numeric values for these variables. Thus real numbers of interval scale and even ratio scale for that matter are assigned to the original ordinal values. The method uses the same objective function as used in fuzzy c-means clustering but both the membership function and the ordinal to real mapping are determined by gradient descent. Since the ordinal to real mapping is not known it cannot be verified for its legitimacy. However the ordinal to real mapping that is found is best in terms of the clustering produced. Simulations show the method to be quite effective.