World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Detection of Brain Tumor in MRI Images Using Optimized ANFIS Classifier

    https://doi.org/10.1142/S0218488521400018Cited by:2 (Source: Crossref)
    This article is part of the issue:

    Tumor is basically a most common disease of brain and the Brain Tumor (BT) treatment has crucial significance. A diagnostic procedure called MRI image that is employed for detecting BT. It is the utmost important and intricate tasks in numerous medical-image applications since it typically involves a huge quantity of data. A lot of methods were applied in BT detection ranging as of image processing to examine the BT; however, the prevailing BT technique is tedious and less effective. So, this paper proposed the detection of the BT in MRI images utilizing optimized ANFIS classifier. Originally, the input MR image is preprocessed utilizing Gaussian Filter (GF) that removes the noise from the inputted image, additionally, the non-brain tissues (NBT) are removed using the technique of skull stripping (SS). After that, segmentation is performed wherein the tumor part is segmented utilizing CBAC technique and edema part is segmented utilizing HLSS segmentation technique. Then, GLCM in addition to GLRLM features are extracted afterward that extorted features is chosen by BFO algorithm. Finally, the selected features inputted to the optimized ANFIS classifier that classifies the tumor class types as Meningioma, Glioma, along with Pituitary. In ANFIS, the optimization procedure is achieved utilizing the PSO. The proposed system’s performance is contrasted to the prevailing systems regarding precision, recall, specificity, sensitivity, accuracy, together with F-Measure.