World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Vision Based Segmentation and Classification of Cracks Using Deep Neural Networks

    https://doi.org/10.1142/S0218488521400080Cited by:11 (Source: Crossref)
    This article is part of the issue:

    Deep learning artificial intelligence (AI) is a booming area in the research field. It allows the development of end-to-end models to predict outcomes based on input data without the need for manual extraction of features. This paper aims for evaluating the automatic crack detection process that is used in identifying the cracks in building structures such as bridges, foundations or other large structures using images. A hybrid approach involving image processing and deep learning algorithms is proposed to detect automatic cracks in structures. As cracks are detected in the images they are segmented using a segmentation process. The proposed deep learning models include a hybrid architecture combining Mask R-CNN with single layer CNN, 3-layer CNN, and8-layer CNN. These models utilizes depth wise convolution with varying dilation rates for efficiently extracting diversified features from the crack images. Further, performance evaluation shows that Mask R-CNN with a single layer CNN achieves an accuracy of 97.5% on a normal dataset and 97.8% on a segmented dataset. The Mask R-CNN with 2-layer convolution resulted in an accuracy of 98.32% on a normal dataset and 98.39% on a segmented dataset. The Mask R-CNN with 8-layers convolution achieves an accuracy of 98.4% on a normal dataset and 98.75% on a segmented dataset. The proposed Mask R-CNN have proved its feasibility in detecting cracks in huge building and structures.