World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HYSTERESIS CHARACTERIZATION BY A FUZZY LEARNING ALGORITHM

    https://doi.org/10.1142/S0218488594000298Cited by:0 (Source: Crossref)

    In this paper, the hysteresis characterization in fuzzy spaces is presented by utilizing a fuzzy learning algorithm to generate fuzzy rules automatically from numerical data. The hysteresis phenomenon is first described to analyze its underlying mechanism. Then a fuzzy learning algorithm is presented to learn the hysteresis phenomenon and is used for predicting a simple hysteresis phenomenon. The results of learning are illustrated by mesh plots and input-output relation plots. Furthermore, the dependency of prediction accuracy on the number of fuzzy sets is studied. The method provides a useful tool to model the hysteresis phenomenon in fuzzy spaces.