World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NEURAL NETWORK THAT LEARNS FROM FUZZY DATA FOR LANGUAGE ACQUISITION

    https://doi.org/10.1142/S0218488596000330Cited by:0 (Source: Crossref)

    This paper proposes a four-layered fuzzy language acquisition network (FLAN) for acquiring fuzzy language. It can catch the intended information from a sentence (command) spoken in natural language with fuzzy terms. The intended information includes a meaningful semantic action and the fuzzy linguistic information of that action (for example, the phrase “move forward” represents the meaningful semantic action and the phrase “very high speed” represents the linguistic information in the fuzzy command “Move forward in a very high speed.”). The proposed FLAN has two important features. First, we can make no restrictions whatever on the fuzzy language input which is used to specify the desired information, and the network requires no acoustic, prosodic, grammar and syntactic structure. Second, the linguistic information of an action is learned automatically and it is represented by fuzzy numbers based on α-level sets. A supervised learning scheme is proposed to train the FLAN on fuzzy training data. This learning scheme consists of the mutual-information (MI) supervised learning algorithm for learning meaningful semantic actions, and the fuzzy backpropagation (FBP) learning algorithm for learning linguistic information. An experimental system is constructed to illustrate the performance and applicability of the proposed FLAN.