World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HYDROGEN AND OXYGEN EVOLUTION WITH TEMPERATURE IN NANOPOROUS SILICON

    https://doi.org/10.1142/S0218625X08011330Cited by:6 (Source: Crossref)

    In this work, a porous layer on an n+ emitter by a chemical route was realized. The MEB observation shows a nanoporous shape of the surface. The subsequent contact depositions needs a heat treatment that has an influence on hydrogen and oxygen distributions in the porous layer. After heat treatments, the porous silicon layer is analyzed by secondary ion mass spectroscopy. The concentration profile of light elements like H, O, C, F and N are measured and compared with untreated porous layer. The results show that oxygen is present at high level at ambient temperature and then decreases from 25°C to 775°C. This means that oxygen desorption is observed on the surface. At 800°C the oxygen content increases again showing an oxidation of porous layer surface. For hydrogen, the concentration decreases from the ambient temperature until 750°C was noted. Then the hydrogen is restored at its first concentration. The FTIR spectra correlate this hydrogen distribution. The absorption spectra show the appearance of SiHx bonds (with x = 1, 2, 3) at 2089, 2115, and 2140 cm-1, respectively. Both elements O and H are present deeply in the porous silicon layer as shown by the sputter time.