Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

APPLICATION OF BACK-PROPAGATION NEURAL NETWORKS FOR CORROSION BEHAVIOR ESTIMATION OF Ni-TiN COATINGS FABRICATED THROUGH PULSE ELECTRODEPOSITION

    https://doi.org/10.1142/S0218625X18501548Cited by:1 (Source: Crossref)

    In this paper, back-propagation (BP) neural network model with 8 hidden layers and 10 neurons was utilized to estimate corrosion behaviors of Ni-TiN coatings, deposited through pulse electrodeposition. Effects of plating parameters, namely, pulse frequency, TiN concentration and current density, on Ni-TiN coatings weight losses were discussed. Results indicated that pulse frequency, TiN concentration and current density had significant effects on weight losses of Ni-TiN coatings. Maximum mean square error of BP model was 9.10%, and this verified that the BP neural network model could accurately estimate corrosion behavior of Ni-TiN coatings. The coating fabricated at pulse frequency of 500Hz, TiN particle concentration of 8g/L and current density of 4A/dm2 consisted of fine grains and compact oxides, demonstrating that the coating displayed best corrosion resistance in this corrosion test. Concentrations of Ti and Ni in Ni-TiN coating prepared at pulse frequency of 500Hz, TiN particle concentration of 8g/L and current density of 4A/dm2 were 18.6at.% and 55.4at.%, respectively.