World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Significance of induced magnetic field and thermal radiation: Dynamics of Newtonian fluids subject to viscous dissipation due to temperature gradient

    https://doi.org/10.1142/S0217979224501911Cited by:2 (Source: Crossref)

    This work is focused on Magneto hydrodynamic unsteady flow of Newtonian fluid flow over a perpendicular porous plate along with chemical reaction, heat, and mass transfer. The induced magnetic field and viscous and magnetic dissipation properties are considered throughout the porous plate. Heat source is the added effect in the model to observe the nature of flow in this work. This study finds its applications in understanding the storage of flues, disposal of radioactive waste materials, flow in water purifies, etc. The nonlinear behavior of the governing equation motivates us to use a finite difference approach for solving equations. The major resolution of this research is to work on how the physical elements affect velocity, temperature, concentration, and magnetic field. Fascinating facts are noticed as the unsteady fluid velocity rises with the heat source parameter because as the heat of a material increases, the movement of the fluid particle will be fast. Due to the presence of a magnetic field high thermal radiation is observed at high temperature and concentration. As the magnetic parameter and magnetic field are inversely proportional according to an induced magnetic field, it is noticed that their magnetic field declines for higher values of magnetic Prandtl number & magnetic parameter. This work has dynamic prominence in the field of medicine and engineering, which develops interest among young researchers.

    PACS: 47.10.A−, 47.10.ad, 44.05.+e, 44.25.+f, 02.30.Jr
    Remember to check out the Most Cited Articles!

    Check out these titles in Condensed Matter Physics today!