World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Spectral Gaps on Discretized Loop Spaces

    https://doi.org/10.1142/S021902570300116XCited by:6 (Source: Crossref)

    We study spectral gaps w.r.t. marginals of pinned Wiener measures on spaces of discrete loops (or, more generally, pinned paths) on a compact Riemannian manifold M. The asymptotic behaviour of the spectral gap as the time parameter T of the underlying Brownian bridge goes to 0 is investigated. It turns out that depending on the choice of a Riemannian metric on the base manifold, very different asymptotic behaviours can occur. For example, on discrete loop spaces over sufficiently round ellipsoids the gap grows of order α/T as T ↓ 0. The strictly positive rate α stabilizes as the discretization approaches the continuum limit. On the other extreme, if there exists a closed geodesic γ : S1 → M such that the sectional curvature on γ(S1) is strictly negative, and the loop is pinned close to γ(S1), then the gap decays of order exp(-β/T), and the decay rate β approaches +∞ as the discretization approaches the continuum limit.