World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN EXTENDED STOCHASTIC INTEGRAL AND A WICK CALCULUS ON PARAMETRIZED KONDRATIEV-TYPE SPACES OF MEIXNER WHITE NOISE

    https://doi.org/10.1142/S0219025708003270Cited by:3 (Source: Crossref)

    Using a general approach that covers the cases of Gaussian, Poissonian, Gamma, Pascal and Meixner measures, we consider an extended stochastic integral and construct elements of a Wick calculus on parametrized Kondratiev-type spaces of generalized functions; consider the interconnection between the extended stochastic integration and the Wick calculus; and give an example of a stochastic equation with a Wick-type nonlinearity. The main results consist of studying the properties of the extended (Skorohod) stichastic integral subject to the particular spaces under consideration; and of studying the properties of a Wick product and Wick versions of holomorphic functions on the parametrized Kondratiev-type spaces. These results are necessary, in particular, in order to describe properties of solutions of normally ordered white noise equations in the "Meixner analysis".

    AMSC: 60H05, 46F05, 60H20