WICK CALCULUS FOR THE SQUARE OF A GAUSSIAN RANDOM VARIABLE WITH APPLICATION TO YOUNG AND HYPERCONTRACTIVE INEQUALITIES
Abstract
We investigate a probabilistic interpretation of the Wick product associated to the chi-square distribution in the spirit of the results obtained in Ref. 7 for the Gaussian measure. Our main theorem points out a profound difference from the previously studied Gaussian7 and Poissonian12 cases. As an application, we obtain a Young-type inequality for the Wick product associated to the chi-square distribution which contains as a particular case a known Nelson-type hypercontractivity theorem.