Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0219025720500083Cited by:3 (Source: Crossref)

The equivalence of the anti-selfduality Yang–Mills equations on the four-dimensional orientable Riemannian manifold and the Laplace equations for some infinite-dimensional Laplacians is proved. A class of modified Lévy Laplacians parameterized by the choice of a curve in the group SO(4) is introduced. It is shown that a connection is an instanton (a solution of the anti-selfduality Yang–Mills equations) if and only if the parallel transport generalized by this connection is a solution of the Laplace equations for some three modified Lévy Laplacians from this class.

Communicated by Oleg Smolyanov

Dedicated to the memory of Alexander A. Belyaev

AMSC: 70S15, 58J35