Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Volatility Forecast by Volatility Index and Its Use as a Risk Management Tool Under a Value-at-Risk Approach

    https://doi.org/10.1142/S0219091518500108Cited by:4 (Source: Crossref)

    This paper examines the predicting power of the volatility indexes of VIX and VHSI on the future volatilities (or called realized volatility, σ30,r) of their respective underlying indexes of S&P500 Index, SPX and Hang Seng Index, HSI. It is found that volatilities indexes of VIX and VHSI, on average, are numerically greater than the realized volatilities of SPX and HSI, respectively. Further analysis indicates that realized volatility, if used for pricing options, would, on some occasions, result in greatest losses of 2.21% and 1.91% of the spot price of SPX and HSI, respectively while the greatest profits are 2.56% and 2.93% of the spot price of SPX and HSI, respectively, making it not an ideal benchmark for validating volatility forecasting techniques in relation to option pricing. Hence, a new benchmark (fair volatility, σf) that considers the premium of option and the cost of dynamic hedging the position is proposed accordingly. It reveals that, on average, options priced by volatility indexes contain a risk premium demanded by the option sellers. However, the options could, on some occasions, result in greatest losses of 4.85% and 3.60% of the spot price of SPX and HSI, respectively while the greatest profits are 4.60% and 5.49% of the spot price of SPX and HSI, respectively. Nevertheless, it can still be a valuable tool for risk management. z-values of various significance levels for value-at-risk and conditional value-at-value have been statistically determined for US, Hong Kong, Australia, India, Japan and Korea markets.