World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Management of Carbon Emissions via a Nonzero-Sum Stochastic Differential Game

    https://doi.org/10.1142/S0219198924500191Cited by:0 (Source: Crossref)

    This study examines an environmental management strategy to effectively cap greenhouse gas (GHG) emissions in an electricity market. To do so, we model a stochastic impulse two-person, nonzero-sum game between a power plant, a representative of electricity production within a country whose primary aim is to maximize profits, and government who is motivated to minimize the social and environmental cost of pollution. We assume that the power plant’s competitive price is equal to the marginal cost whilst the government’s running cost is linear. When the uncontrolled output of GHG emissions evolves as a Geometric Brownian motion, we provide a more dynamic and robust depiction of the interplay between government and the energy sector. We provide solutions to the impulse control problem derived via the quasi-variational inequalities (QVIs). We then present a sufficiency criterion for the existence of a Nash equilibrium for the optimal policy. Ultimately, our use of short-run price competition characterized by strategic supplies for renewable and fossil resources and inclusion of endogenous constraints on production capacity provides a more robust model and an effective framework for the development of policy that allows governments to meet emissions targets whilst guaranteeing energy supply.

    AMSC: 93E20, 91B70, 91A15, 91B76