World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Free Vibration of Spherical Shells Using a Hybrid Finite Element Method

    https://doi.org/10.1142/S021945541450062XCited by:13 (Source: Crossref)

    In this study, free vibration analysis of spherical shell is carried out. The structural model is based on a combination of thin shell theory and the classical finite element method. Free vibration equations using the hybrid finite element formulation are derived and solved numerically. Therefore, the number of elements chosen is function of the complexity of the structure. Convergence is rapid. It is not necessary to choose a large number of elements to obtain good results. The results are validated using numerical and theoretical data available in the literature. The analysis is accomplished for spherical shells of different geometries, boundary conditions and radius to thickness ratios. This proposed hybrid finite element method can be used efficiently for design and analysis of spherical shells employed in high speed aircraft structures.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures