World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Inelastic Buckling of FGM Cylindrical Shells Subjected to Combined Axial and Torsional Loads

    https://doi.org/10.1142/S0219455417710109Cited by:12 (Source: Crossref)

    A semi-analytical procedure is presented to solve the elastoplastic buckling problem of cylindrical shells made of functionally groded materials (FGMs) under combined axial and torsional loads. The elastoplastic properties are assumed to vary smoothly according to the power law distribution rule, introduced in the J2 deformation theory for formulation of the constitutive relation of FGMs in the framework of the Tamura–Tomota–Ozawa (TTO) model, which is a volume fraction-based material model. The critical condition is deduced by the Ritz method. Assuming the uniform prebuckling strain, a biaxial stress state analysis is conducted to determine the analytical position of the elastoplastic interface, which is used in the integration of the elastoplastic internal force and all the material-related structural parameters. Finally, an iterative procedure is adopted to find the exact elastoplastic critical load. Numerical results indicate the effects of the inhomogeneous parameter and the elastoplastic material properties of their constituents on the stability region and plastic flow region of the materials.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures