World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Effectiveness of Using RFHDS Connected PIP System for Subsea Pipeline Vibration Control

    https://doi.org/10.1142/S0219455418400059Cited by:7 (Source: Crossref)
    This article is part of the issue:

    Pipe-in-pipe (PIP) system can be considered as a structure-tuned mass damper (TMD) system by replacing the hard centralizers by the softer springs and dashpots to connect the inner and outer pipes. With properly designed connecting devices, PIP system therefore has the potential to mitigate the subsea pipeline vibrations induced by various sources, such as earthquake or vortex shedding. This study proposes using rotational friction hinge dampers with springs (RFHDSs) to connect the inner and outer pipes. The rotational friction hinge dampers (RFHDs) are used to absorb the energy induced by the external vibration sources and the springs are used to provide the stiffness to the TMD system and to restore the original locations of the inner and outer pipes. To investigate the effectiveness of this new design concept, detailed three-dimensional (3D) finite element (FE) model of the RFHD is developed in ANSYS and the hysteretic behavior of RFHD is firstly studied. The calculated hysteretic loop is then applied to the 3D PIP FE model to estimate the seismic responses. The effectiveness of the proposed system to mitigate seismic induced vibrations is examined by comparing the seismic responses of the proposed system with the conventional PIP system. The influences of various parameters, such as the preload on the bolt, the friction coefficient and the spring stiffness, on the RFHD hysteresis behavior and on the seismic responses of PIP system are investigated and some suggestions on the RFHDS design are made.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures