World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Nonlinear Thermo-Electro-Mechanical Vibration of Functionally Graded Piezoelectric Nanoshells on Winkler–Pasternak Foundations Via Nonlocal Donnell’s Nonlinear Shell Theory

    https://doi.org/10.1142/S0219455419501001Cited by:20 (Source: Crossref)

    The thermo-electro-mechanical nonlinear vibration of circular cylindrical nanoshells on the Winkler–Pasternak foundation is investigated. The nanoshell is made of functionally graded piezoelectric material (FGPM), which is simulated by the nonlocal elasticity theory and Donnell’s nonlinear shell theory. The Hamilton’s principle is employed to derive the nonlinear governing equations and corresponding boundary conditions. Then, the Galerkin’s method is used to obtain the nonlinear Duffing equation, to which an approximate analytical solution is obtained by the multiple scales method. The results reveal that the system exhibits hardening-spring behavior. External applied voltage and temperature change have significant effect on the nonlinear vibration of the FGPM nanoshells. Moreover, the effect of power-law index on the nonlinear vibration of the FGPM nanoshells depends on parameters such as the external applied voltage, temperature change and properties of the Winkler–Pasternak foundation.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures