Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Non-Iterative Integration Scheme Enriching the Solution to the Coupled Maglev Vehicle–Bridge System

    https://doi.org/10.1142/S0219455421500528Cited by:3 (Source: Crossref)

    A non-iterative integration scheme is presented in this study to enrich the solutions to the coupled equations of the maglev vehicle–bridge system. The proposed integration scheme is composed of two integration methods aiming at providing the solutions to equation of motion and state-space equation. First, the equation of motion of the simply supported girder bridge is transformed by the modal superposition method. Then the state-space equation is used to describe the motions of both the vehicle and the suspension control system, with the associated matrices assembled using the fully computerized approach. By adopting this integration scheme, only pure vector calculations arise in the solution process, regardless of the existence of time-dependent displacement and velocity on the right-hand sides of the two coupled equations. The proposed integration method is of the second-order accuracy with and without damping. Being equipped with adequate numerical dissipation and dispersion, the method also possesses the characteristic of little computing errors, as can be achieved through the use of different pairs of parameters. Finally, numerical simulations have been conducted to assess the influence of different feedback gains, three types of bridges with different lengths, and guideway irregularity on the maglev vehicle–bridge system.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures