World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Multimodal Resonance Response of Incompressible Hyperelastic Moderately Thick Cylindrical Shells

    https://doi.org/10.1142/S0219455425500282Cited by:0 (Source: Crossref)

    Based on the modified third-order shear deformation theory, the harmonic balance method, and the pseudo-arclength continuation method with two-point prediction, the nonlinear forced vibration response of incompressible hyperelastic moderately thick cylindrical shells subjected to a concentrated harmonic load at mid-span and simply supported boundary conditions at both ends is investigated. The algorithmic procedure for solving steady-state periodic solutions of strongly nonlinear systems of differential equations is presented. The structural response characteristics of shells under different excitation amplitudes and structural parameters are analyzed. The numerical results indicate that the aspect ratio of moderately thick hyperelastic cylindrical shells has a significant effect on the natural frequency ratio. Different frequency ratios lead to varying nonlinear mode coupling effects. The coupling effects among modes result in complex nonlinear behavior in the vibration response of each mode, leading to abundant multi-valued phenomena in the response curve.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures