World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Optimal Classification Model for Text Detection and Recognition in Video Frames

    https://doi.org/10.1142/S0219467825500147Cited by:0 (Source: Crossref)

    Currently, the identification of text from video frames and normal scene images has got amplified awareness amongst analysts owing to its diverse challenges and complexities. Owing to a lower resolution, composite backdrop, blurring effect, color, diverse fonts, alternate textual placement among panels of photos and videos, etc., text identification is becoming complicated. This paper suggests a novel method for identifying texts from video with five stages. Initially, “video-to-frame conversion”, is done during pre-processing. Further, text region verification is performed and keyframes are recognized using CNN. Then, improved candidate text block extraction is carried out using MSER. Subsequently, “DCT features, improved distance map features, and constant gradient-based features” are extracted. These characteristics subsequently provided “Long Short-Term Memory (LSTM)” for detection. Finally, OCR is done to recognize the texts in the image. Particularly, the Self-Improved Bald Eagle Search (SI-BESO) algorithm is used to adjust the LSTM weights. Finally, the superiority of the SI-BESO-based technique over many other techniques is demonstrated.

    Remember to check out the Check out our Most Cited Articles!

    Check out these titles on Image Analysis