World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COSTANDARD MODULES OVER SCHUR SUPERALGEBRAS IN CHARACTERISTIC p

    https://doi.org/10.1142/S0219498808002734Cited by:12 (Source: Crossref)

    In this paper we consider the problem of describing the costandard modules ∇(λ) of a Schur superalgebra S(m|n,r) over a base field K of arbitrary characteristic. Precisely, if G = GL(m|n) is a general linear supergroup and Dist(G) its distribution superalgebra we compute the images of the Kostant ℤ-form under the epimorphism Dist(G) → S(m|n,r). Then, we describe ∇(λ) as the null-space of some set of superderivations and we obtain an isomorphism ∇(λ) ≈ ∇(λ+|0) ⊗ ∇(0|λ-) assuming that λ = (λ+-) and λm = 0. If char(K) = p we give a Frobenius isomorphism ∇(0|pμ) ≈ ∇(μ)p where ∇(μ) is a costandard module of the ordinary Schur algebra S(n,r). Finally we provide a characteristic free linear basis for ∇(λ|0) which is parametrized by a set of superstandard tableaux.

    AMSC: 17A70, 20G05, 05E15