World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A STRUCTURE-MOTIVATED MODEL OF THE PASSIVE MECHANICAL RESPONSE OF THE PRIMARY PORCINE RENAL ARTERY

    https://doi.org/10.1142/S021951941450033XCited by:13 (Source: Crossref)

    The primary renal arteries transport up to one fourth of cardiac output to the kidneys for blood plasma ultrafiltration, with a functional dependence on the vessel geometry, composition and mechanical properties. Despite the critical physiological function of the renal artery, the few biomechanical studies that have focused on this vessel are either uniaxial or only partially describe its bi-axial mechanical behavior. In this study, we quantify the passive mechanical response of the primary porcine renal artery through bi-axial mechanical testing that probes the pressure-deformed diameter and pressure-axial force relationships at various longitudinal extensions, including the in-vivo axial stretch ratio. Mechanical data are used to parameterize and validate a structure-motivated constitutive model of the arterial wall. Together, experimental data and theoretical predictions of the stress distribution within the arterial wall provide a comprehensive description of the passive mechanical response of the porcine renal artery.