USING FAST FOURIER TRANSFORM AND POLYNOMIAL FITTING ON DORSAL FOOT KINEMATICS DATA TO IDENTIFY SIMULATED ANKLE SPRAIN MOTIONS FROM COMMON SPORTING MOTIONS
Abstract
Ankle sprain is very common in sports, and a commonly suggested etiology is the delayed peroneal muscle reaction time. Recent studies showed the successful attempts to deliver electrical stimulation to the peroneal muscles externally to initiate contraction before it could react, however, the success relies on a workable method to detect ankle sprain injury in time. This study presented a fast Fourier transform and polynomial fitting method with dorsal foot kinematics data for quick ankle sprain detection. Five males performed 100 simulated ankle sprain and 250 common sporting motion trials. Eight gyrometers recorded the three-dimensional angular velocities at 500Hz. Data were trimmed with a 0.11s window size, the suggested duration of preinjury phase in ankle sprain, and were transformed from time to frequency domain by fast Fourier transform and fitted with a fifth-order polynomial. First-order coefficients from polynomial fitting on frequency space were obtained. The method achieved 97.0% sensitivity and 91.4% specificity in identifying simulated sprains, vertical jump–landing, cutting, stepping-down, running, and walking motions, with vertical jump–landing excluded due to its relatively low specificity (67.3%). The method can be used to detect ankle sprain in sports with mainly floor movements and minimal vertical jump–landing motion.