COMPLEXITY OF AN IVLEV'S PREDATOR-PREY MODEL WITH PULSE
Abstract
In this paper, we investigate the extinction, permanence and dynamic complexity of the two-prey, one-predator system with Ivlev's functional response and impulsive perturbation on the predator at fixed moments. Conditions for the extinction and permanence of the system are established via the comparison theorem. Numerical simulations are carried out to explain the conclusions we obtain. Furthermore, the resulting bifurcation diagrams clearly show that the impulsive system takes on many forms of complexity including period-doubling bifurcation, period-halving bifurcation, and chaos.