World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Lp resolvent estimates for variable coefficient elliptic systems on Lipschitz domains

    https://doi.org/10.1142/S021953051450050XCited by:5 (Source: Crossref)

    In this paper, we treat the general strongly elliptic systems with a class of singular potentials on a bounded Lipschitz domain Ω ⊂ ℝd, d ≥ 3. We establish the Lp resolvent estimates on Ω for the above systems with vanishing Dirichlet type or Neumann type boundary value condition, where 2d/(d + 2) - ϵ < p < 2d/(d - 2) + ϵ with some positive constant ϵ = ϵ(Ω).

    AMSC: 35J47, 35J57, 47A10