Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Deep ReLU networks and high-order finite element methods

    https://doi.org/10.1142/S0219530519410136Cited by:58 (Source: Crossref)
    This article is part of the issue:

    Approximation rate bounds for emulations of real-valued functions on intervals by deep neural networks (DNNs) are established. The approximation results are given for DNNs based on ReLU activation functions. The approximation error is measured with respect to Sobolev norms. It is shown that ReLU DNNs allow for essentially the same approximation rates as nonlinear, variable-order, free-knot (or so-called “hp-adaptive”) spline approximations and spectral approximations, for a wide range of Sobolev and Besov spaces. In particular, exponential convergence rates in terms of the DNN size for univariate, piecewise Gevrey functions with point singularities are established. Combined with recent results on ReLU DNN approximation of rational, oscillatory, and high-dimensional functions, this corroborates that continuous, piecewise affine ReLU DNNs afford algebraic and exponential convergence rate bounds which are comparable to “best in class” schemes for several important function classes of high and infinite smoothness. Using composition of DNNs, we also prove that radial-like functions obtained as compositions of the above with the Euclidean norm and, possibly, anisotropic affine changes of co-ordinates can be emulated at exponential rate in terms of the DNN size and depth without the curse of dimensionality.

    AMSC: 41A25, 41A46, 65N30
    Remember to check out the Most Cited Articles!

    Check out our Differential Equations and Mathematical Analysis books in our Mathematics 2021 catalogue
    Featuring authors such as Ronen Peretz, Antonio Martínez-Abejón & Martin Schechter