World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE ONSET OF RAYLEIGH–BÉNARD CONVECTION IN A LAYER OF NANOFLUID IN HYDROMAGNETICS

    https://doi.org/10.1142/S0219581X13500385Cited by:10 (Source: Crossref)

    Rayleigh–Bénard convection in a horizontal layer of nanofluid in the presence of uniform vertical magnetic field is investigated by using Galerkin weighted residuals method. The model used for the nanofluid describes the effects of Brownian motion and thermophoresis. Linear stability theory based upon normal mode analysis is employed to find expressions for Rayleigh number and critical Rayleigh number. The boundaries are considered to be free–free, rigid–rigid and rigid–free. The influence of magnetic field on the stability is investigated and it is found that magnetic field stabilizes the fluid layer. It is also observed that the system is more stable in the case of rigid–rigid boundaries and least stable in case of free–free boundaries. The expression for Rayleigh number for oscillatory convection has also been derived for free–free boundaries.