World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Efficient and Privacy Preserving Clustering Algorithm for Spatiotemporal Data

    https://doi.org/10.1142/S0219622022500110Cited by:0 (Source: Crossref)

    The efficiency of a spatiotemporal data analysis algorithm decreases as the amount of data increases. Many clustering techniques have been proposed for data analysis applications. However, applying those techniques to spatiotemporal data clustering is still in its infancy. In this paper, we tackle the issue of clustering spatiotemporal data on public Cloud based on the distance between them. To increase the efficiency of spatiotemporal clustering, we have proposed a MapReduce-based framework for clustering. However, as spatiotemporal dataset contains sensitive information, directly outsourcing spatiotemporal data to Cloud servers will raise privacy concerns. To address the problem of privacy, we have proposed a privacy preserving clustering algorithm based on MapReduce for spatiotemporal data that can be efficiently outsourced for data processing on the Cloud servers. The proposed scheme allows the clustering operation to be performed directly on the encrypted spatiotemporal data by Cloud server. Extensive experimental evaluation with trajectory data shows that our scheme efficiently produces higher quality clustering results.