World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Scalable and Data-Independent Multi-Agent Recommender System Using Social Networks Analysis

    https://doi.org/10.1142/S021962202350030XCited by:5 (Source: Crossref)

    Nowadays, many online users find the selection of information and required products challenging due to the growing volume of data on the web. Recommender systems are introduced to deal with information overload. Cold start and data sparsity are the two primary issues in these systems, which lead to a decrease in the efficiency of recommender systems. To solve the problems, this paper proposes a novel method based on social network analysis. Our method leverages a multi-agent system for clustering users and items and predicting relationships between them simultaneously. The information on users and items is extracted from the user-item matrix as distinct graphs. Each of the graphs is then treated as a social network, which is further processed and analyzed by community detection and link prediction procedures. The users are grouped into several clusters by the community detection agent, which results in each cluster as a community. Then link prediction agent identifies the latent relationships between users and items. Simulation results show that the proposed method has significantly improved performance metrics as compared to recent techniques.