World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THEORETICAL STUDY OF HIGHLY DOPED HETEROFULLERENES EVOLVED FROM THE D6h SYMMETRY C36 CAGE

    https://doi.org/10.1142/S0219633613500673Cited by:0 (Source: Crossref)

    The structural stabilities and electronic properties of singlet and triplet states C24X12 heterofullerenes where X = B, Al, C, Si, N, and P are probed at the B3LYP/6-31+G* level of theory. Vibrational frequency calculations show that all of the systems are true minima. The calculated binding energies of heterofullerenes show C24B12 and C24N12 as the most stable heterofullerenes by 6.10 eV/atom and 5.63 eV/atom, respectively. While B, Al, N and P doping increase the conductivity of fullerene through decreasing its HOMO–LUMO gap, doping Si enhance its stability against electronic excitations via increasing the HOMO–LUMO gap. High charge transfer on the surfaces of our stable heterofullerenes, especially C24Al12 followed by C24Si12 and C24P12, provokes further investigations on their possible application for hydrogen storage.

    Remember to check out the Most Cited Articles!

    Check out our Chemistry New Titles