World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0219649217500368Cited by:30 (Source: Crossref)

Online reviews are the most valuable sources of information about customer opinions and are considered the pillars on which the reputation of an organisation is built. From a customer’s perspective, review information is key to making a proper decision regarding an online purchase. Reviews are generally considered an unbiased opinion of an individual’s personal experience with a product, but the underlying truth about these reviews tells a different story. Spammers exploit these review platforms illegally because of incentives involved in writing fake reviews, thereby trying to gain an advantage over competitors resulting in an explosive growth of opinion spamming. The present study analyses and categorises the available literature on opinion spamming according to three detection targets: (1) opinion spam, (2) opinion spammers, and (3) collusive opinion spammer groups. The study further highlights and divides opinion spamming into three types based on textual and linguistic, behavioural, and relational features. Moreover, several state-of-the-art machine-learning techniques for opinion spam detection have also been discussed in the study. It concludes with a summary of the research articles on opinion spam detection and some interesting results to assist researchers for further exploration of the domain.