World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Lossy to lossless image coding based on wavelets using a complex allpass filter

    https://doi.org/10.1142/S0219691314600029Cited by:1 (Source: Crossref)

    Wavelet-based image coding has been adopted in the international standard JPEG 2000 for its efficiency. It is well-known that the orthogonality and symmetry of wavelets are two important properties for many applications of signal processing and image processing. Both can be simultaneously realized by the wavelet filter banks composed of a complex allpass filter, thus, it is expected to get a better coding performance than the conventional biorthogonal wavelets. This paper proposes an effective implementation of orthonormal symmetric wavelet filter banks composed of a complex allpass filter for lossy to lossless image compression. First, irreversible real-to-real wavelet transforms are realized by implementing a complex allpass filter for lossy image coding. Next, reversible integer-to-integer wavelet transforms are proposed by incorporating the rounding operation into the filtering processing to obtain an invertible complex allpass filter for lossless image coding. Finally, the coding performance of the proposed orthonormal symmetric wavelets is evaluated and compared with the D-9/7 and D-5/3 biorthogonal wavelets. It is shown from the experimental results that the proposed allpass-based orthonormal symmetric wavelets can achieve a better coding performance than the conventional D-9/7 and D-5/3 biorthogonal wavelets both in lossy and lossless coding.

    AMSC: 22E46, 53C35, 57S20