World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Continuous quaternion fourier and wavelet transforms

    https://doi.org/10.1142/S0219691314600030Cited by:28 (Source: Crossref)

    A two-dimensional (2D) quaternion Fourier transform (QFT) defined with the kernel is proposed. Some fundamental properties, such as convolution, Plancherel and vector differential theorems, are established. The heat equation in quaternion algebra is presented as an example of the application of the QFT to partial differential equations. The wavelet transform is extended to quaternion algebra using the kernel of the QFT.

    AMSC: 15A66, 42B10, 30G35