World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An appropriate thresholding method of wavelet denoising for dropping ambient noise

    https://doi.org/10.1142/S0219691318500121Cited by:14 (Source: Crossref)

    For the non-stationary signal denoising, an effective method for dropping ambient noise is based on discrete wavelet transform. Also, in order to minimize the loss of useful signal and get high SNR in the wavelet denoising, it is very important that the thresholding is suitable for the characteristics of signal. In this paper, we propose new thresholding method to reduce an ambient noise and to detect effectively the useful signal. First, we analyze four kinds of previous wavelet threshold functions (Hard, Soft, Garrote and Hyperbola) and propose new wavelet threshold function compromised between Garrote and Hyperbola threshold functions. Next, a threshold value is selected by value to reduce exponentially according to the wavelet decomposition level. We also analyze a continuity and monotonicity, and prove the logic of new threshold function. The results of theoretical analysis show that new threshold function solves the problems of constant error and discontinuity of previous threshold functions, and minimizes the information loss of useful signal. The results of experiment show that SNR of new thresholding method is highest and RMSE and Entropy are smallest. The results of theoretical analysis and experiment show that new thresholding method is more appropriate to wavelet denoising for dropping ambient noise than previous methods.

    AMSC: 42C40, 60G99, 65T60