World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Multiscale transform-based secured joint efficient medical image compression-encryption using symmetric key cryptography and ebcot encoding technique

    https://doi.org/10.1142/S0219691319500346Cited by:15 (Source: Crossref)

    Due to the huge advancement in technology, digitizing the multimedia content like text, images and videos has become easier. Everyday huge amounts of multimedia content are shared through the social networks using internet. Sometimes this multimedia content can be hacked by the hackers. This will lead to the misuse of the data. On the other hand, the medical content needs high security and privacy. Motivated by this, joint secured medical image compression–encryption mechanisms are proposed in this paper using multiscale transforms and symmetric key encryption techniques. The multiscale transforms involved in this paper are wavelet transform, bandelet transform and curvelet transform. The encryption techniques involved in this paper are international data encryption algorithm (IDEA), Rivest Cipher (RC5) and Blowfish. The encoding technique used in this paper is embedded block coding with truncation (EBCOT). Experimental results are done for the proposed works and evaluated by using various parameters like Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Image Quality Index (IQI) and Structural Similarity Index (SSIM), Average Difference (AD), Normalized Cross-correlation (NK), Structural Content (SC), Maximum difference (MD), Laplacian Mean Squared Error (LMSE) and Normalized Absolute Error (NAE). It is justified that the proposed approaches in this paper yield good results.

    AMSC: 68U10, 92C55, 94A60, 68P30, 94A08, 44A05, 44A30