World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0219691320500411Cited by:1 (Source: Crossref)

We propose a new outline for adaptive dictionary learning methods for sparse encoding based on a hierarchical clustering of the training data. Through recursive application of a clustering method, the data is organized into a binary partition tree representing a multiscale structure. The dictionary atoms are defined adaptively based on the data clusters in the partition tree. This approach can be interpreted as a generalization of a discrete Haar wavelet transform. Furthermore, any prior knowledge on the wanted structure of the dictionary elements can be simply incorporated. The computational complexity of our proposed algorithm depends on the employed clustering method and on the chosen similarity measure between data points. Thanks to the multiscale properties of the partition tree, our dictionary is structured: when using Orthogonal Matching Pursuit to reconstruct patches from a natural image, dictionary atoms corresponding to nodes being closer to the root node in the tree have a tendency to be used with greater coefficients.

AMSC: 94A12, 94A08, 68U10, 65D18