World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A wavelet network-based speech enhancement system using noisy-as-clean strategy

    https://doi.org/10.1142/S0219691323500339Cited by:0 (Source: Crossref)

    In recent years, the field of speech enhancement has greatly benefited from the rapid development of neural networks. However, the requirement for large amounts of noisy and clean speech pairs for training limits the widespread use of these models. Wavelet network-based speech enhancement typically relies on clean speech signals as a training target. This paper presents a new method that combines a neural network with the wavelet theory for speech enhancement without the need for clean speech signals as targets in training mode. Five wide evaluation criteria, namely short-time objective intelligibility (STOI), signal-to-noise ratio (SNR), segmental signal-to-noise ratio (SNRseg), weighted spectral slope (WSS) and logarithmic spectral distance (LSD), have been used to confirm the effectiveness of the proposed method. The results show that the proposed method performs similar to a wavelet neural network (WNN) trained with clean signals, or even superior to those obtained from the clean target-based strategies.