ENTANGLEMENT SHARING: FROM QUBITS TO GAUSSIAN STATES
Abstract
It is a central trait of quantum information theory that there exist limitations to the free sharing of quantum correlations among multiple parties. Such monogamy constraints have been introduced in a landmark paper by Coffman, Kundu and Wootters, who derived a quantitative inequality expressing a trade-off between the couplewise and the genuine tripartite entanglement for states of three qubits. Since then, a lot of efforts have been devoted to the investigation of distributed entanglement in multipartite quantum systems. In this paper we report, in a unifying framework, a bird's eye view of the most relevant results that have been established so far on entanglement sharing in quantum systems. We will take off from the domain of N qubits, graze qudits, and finally land in the almost unexplored territory of multimode Gaussian states of continuous variable systems.