ENTANGLEMENT MODULATION IN A SPIN CHAIN BY A LOCAL IMPURITY
Abstract
We study the ground-state entanglement properties of an XX spin 1/2 chain in transverse field, in its quasi-long-ranged ordered phase, with a magnetic impurity, represented in terms of an additional transverse magnetic field located at one precise site. For such a system, we show that a control of the ground state entanglement can be achieved by acting on the impurity field. To demonstrate this possibility, we evaluate exactly the nearest neighbor and next-nearest neighbor concurrence in the presence of the impurity. It turns out that either an enhancement or a quenching of entanglement between selected spin pairs can be obtained by acting on the intensity of the impurity. For specific values of the magnetic field a spatial modulation of concurrence along the chain is also obtained.