QUANTUM CODES FROM CYCLIC CODES OVER FINITE RING
Abstract
A new method to obtain self-orthogonal codes over finite field F2 is presented. Based on this method, we provide a construction for quantum error-correcting codes starting from cyclic codes over finite ring R = F2 + uF2. As an example, we present infinite families of quantum error-correcting codes which are derived from cyclic codes over the ring R = F2 + uF2.